[1] Early evidence for dark matter dates back to “On the masses of nebulae and clusters of nebulae,” F. Zwicky, Astrophysical Journal. Vol. 86, 217-246 (1937). An overview of evidence is “Dark Matter: The evidence from astronomy, astrophysics and cosmology,” Matt Roos, [arXiv:1001.0316 [astro-ph.CO]]. A recent review of the local dark matter density is “The Local Dark Matter Density,” J. I. Read, J. Phys. G: Nucl. Part. Phys. 41 (2014) 063101. “Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments,” J. Billard, L. Strigari, E. Figueroa-Feliciano, Phys. Rev. D 89, 023524 (2014), [arXiv: 1307.5458 [hep.ph]].

[2] D.N. Spergel et al. “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results,” The Astrophysical journal Supplement. 180, 225-240 (2008).

[3] “Model-independent Analyses of Dark-Matter Particle Interactions,” Nikhil Anand, A. Liam Fitzpatrick, W. C. Haxton, talk presented at TAUP2013, [arXiv:1405.6690[nucl-th]]

[4] See e.g. “Cosmological Simulations of Multicomponent Cold Dark Matter,” Mikhail V. Medvedev, Phys. Rev. Lett. 113, 071303 (2014).

[5] “Building for discovery: Strategic Plan for U.S. Particle Physics in the Global Context,” Particle Physics Project Prioritization Panel (P5) report available at http://science.energy.gov/hep/hepap/reports/; Background information is available at the P5 workshop on the Future of High energy Physics, https://indico.bnl.gov/conferenceDisplay.py?confId=688 .

[6] “The Large Underground Xenon (LUX) Experiment,” D. S. Akerib et al., Nuclear Inst. and Methods in Physics Research A704 111 – 126 (2013), [ arXiv:1211.3788 [physics.ins-det]]. See also http://lux.brown.edu/LUX_dark_matter/Home.html

[7] “After LUX: The LZ Program,” D.C. Malling et al., Conference proceedings from APS DPF 2011, [arXiv:1110.0103 [astro-ph.IM]].

[8] “Liquid Xenon Detectors for Particle Physics and Astrophysics,” E. Aprile, T. Doke, Rev. Mod. Phys. 82, 2053-2097(2010), [ arXiv:0910.4956 [physics.ins-det]].

[9] “Liquid noble gas detectors for low energy particle physics,” Vitaly Chepel, Henrique Araújo, JINST 8, R04001 (2014), [arXiv:1207.2292v3 [physics.ins-det] ].

[10] “The case for a directional dark matter detector and the status of current experimental efforts,” S. Ahlen et al., IJMPA Vol. 25, Issue 1, 2010, [arXiv:0911.0323 [astro-ph.CO]].  [11] “The LUX-ZEPLIN (LZ) Conceptual Design Report” D.S. Akerib et al. arXiv: 1509.02910.

[12] “The Sanford Underground Research Facility at Homestake,” J. Heise, Proceedings of the VII International Conference on Interconnections between Particle Physics and Cosmology (PPC2013), Deadwood, SD, July 8-13, 2013, [arXiv:1401.0861 [physics.ins-det]]

[13] “LUXSim: A Component-Centric Approach to Low-Background Simulations,” D. S. Akerib et al., arXiv: 1111.2074 [physics.data-an]]; “NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon,” M. Szydagis, N. Barra, K. Kazkaz, J. Mock, D. Stola, M. Sweany, M. Tripathi, S. Uvarov, N. Walsh, M. Woods, [arXiv:1106.1613 [physics.ins-det]]; “Enhancement of NEST Capabilities for Simulating Low-Energy Recoils in Liquid Xenon,” Matthew Szydagis, Adalyn Fyhrie, Daniel Thorngren, Mani Tripathi [arXiv:1307.6601 [physics.ins-det]]; “Modeling Pulse Characteristics in Xenon with NEST,” J. Mock, N. Barry, K. Kazkaz, D. Stola, M. Szydagis, M. Tripathi, S. Uvarov, M. Woods, N. Walsh, [arXiv:1310.1117]].

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s